**Definition 7**. A **field** \(\mathbb{F}\) is a ring where the set
\(\mathbb{F} \setminus \set{0}\) is an Abelian group under multiplication with the
**multiplicative identity** 1.

**Definition 7**. A **field** \(\mathbb{F}\) is a ring where the set
\(\mathbb{F} \setminus \set{0}\) is an Abelian group under multiplication with the
**multiplicative identity** 1.